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ABSTRACT
In this paper we present a comparison of a variety of incre-
mental learning algorithms along with traditional (batch)
learning algorithms in an earth observation scenario. The
approach was evaluated with the earth observation data
set for land-cover classification from Europe Space Agency’s
Sentinel-2 mission, the digital elevation model and the ground
truth data of land use and land cover from Slovenia. We
show that incremental algorithms can produce competitive
results while using less time than batch methods.
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1. INTRODUCTION
Land cover classification is one of the common and well re-
searched tasks of machine learning (ML) in the Earth Ob-
servation (EO) community [1]. The challenge is to classify
land into different types based on remote sensing data such
as satellite images, radar data, information on weather [12]
and altitude. The most commonly used data are satellite
images, which may vary in acquisition period, resolution or
wavelength. A plethora of algorithms have explored the po-
tential of using a single-date image [3] and even time series
of images for the task [11, 13]. Extensive work with state-
of-the-art accuracy was performed using methods of deep
learning [14]. The latter report a high computational effort
in the learning and forecasting phase, which reduces their
potential for continuous tasks requiring a timely response.
There have also been efforts to reduce learning and predic-
tion times using intelligent feature selection [6, 7]. To the
best of our knowledge, no cases have been reported where
stream models have been used in an EO scenario. The pri-
mary purpose of incremental learning would be to reduce the
computational cost of classification, regression, or clustering
techniques, which, when dealing with large data provided
by Sentinel 2 and other sources, can be a significant cost to
organizations trying to extract knowledge from that data.
One of the advantages of incremental learning is that it is
not necessary to load all the data into memory at once when
creating a model. We only need to store the model and the
part of the data we are processing. This could be especially
useful in various EO scenarios, as the data from Copernicus
services is estimated to exceed 150PB.

2. DATA
2.1 EO data
The Earth observation data were provided by the Sentinel 2
mission of the EU Copernicus programme, whose main ob-
jectives are land monitoring, detection of land use and land
changes, support for land cover creation, disaster relief sup-
port and monitoring of climate change [2]. The data com-
prise 13 multi-spectral channels in the visible/near- infrared
(VNIR) and short wave infrared (SWIR) spectral range with
a temporal resolution of 5 days and spatial resolutions of
10m, 20m and 60m [8]. The Sentinel’s Level-2A products
(surface reflections in cartographic geometry) were accessed
via the services of SentinelHub1 and processed using eo-

learn2 library. Additionally, a digital elevation model for
Slovenia (EU-DEM) with 30m resolution3 was used.

2.2 LULC data
LULC (Land Use Land Cover) data for Slovenia is collected
by the Ministry of Agriculture, Forestry and Food and is
publicly available [10]. The data is provided in shapefile for-
mat, with each polygon representing a patch of land marked
with one of the LULC classes. Originally there were 25
classes, but we introduced a more general dataset by group-
ing similar classes together. The frequencies of 8 newly
grouped classes are shown in Figure 1.

2.3 Feature Engineering
The EO data were collected for the whole year. 4 raw band
measurements (red, green, blue - RGB and near-infrared
- NIR) and 6 relevant vegetation- related derived indices
(normalized differential vegetation index - NDVI, normal-
ized differential water index - NDWI, enhanced vegetation
index - EVI, soil-adjusted vegetation index - SAVI, structure
intensive pigment index - SIPI and atmospherically resis-
tant vegetation index - ARVI) were considered. The derived
indices are based on extensive domain knowledge and are
used for assessing vegetation properties. One example is the
NDVI index, which is an indicator of for vegetation health
and biomass. Its value changes during the growth period
of the plants and differs significantly from other unplanted

1https://www.sentinel-hub.com/
2https://github.com/sentinel-hub/eo-learn
3https://www.eea.europa.eu/data-and-maps/data/
eu-dem#tab-original-data

https://www.sentinel-hub.com/
https://github.com/sentinel-hub/eo-learn
https://www.eea.europa.eu/data-and-maps/data/eu-dem#tab-original-data
https://www.eea.europa.eu/data-and-maps/data/eu-dem#tab-original-data


Figure 1: Frequencies of grouped classes for LULC
data from 2017 show that the new simplified clas-
sification preserves the most common classes sepa-
rated and merges the less common classes. Classes
with the lowest frequencies were selected for over-
sampling.

areas. The NDVI is calculated as:

NDV I =
NIR− red
NIR+ red

Timeless features were extracted based on Valero et al. [11].
These features can describe the three most important crop
stages: the beginning of greenness, the ripening period and
the beginning of senescence [11, 13]. Annual time series
have different shapes due to the phenological cycle of a crop
and characterize the development of a crop. With timeless
features, they can be represented in a condensed form.

For each pixel, 18 features per each of 10 time series were
generated. From elevation data, the raw value and maxi-
mum tilt for a given pixel were calculated as 2 additional
features. In total 182 features were constructed. From these
features only a Pareto-optimal subset of 9 features was se-
lected [6].

3. METHODOLOGY
Classification accuracy ( CA ) and F1 score were calcu-
lated for 11 different ML methods, 6 batch learning meth-
ods and 5 incremental learning methods. All incremental
learning methods are available in the ml-rapids (MLR)4 li-
brary which has been developed in order to support the use
of incremental learning techniques within eo-learn [4] library.

Hoeffding Tree (incremental )
Hoeffding tree (HT) is an incremental decision tree that can
learn from massive streams. It assumes that the distribution
of generating examples does not change over time. The Ho-
effding tree begins as an initially empty leaf. Each time the
new example arrives, the algorithm sorts it down the tree
(it updates the internal nodes statistics ) until it reaches the
leaf. When it reaches the leaf, it updates the leaf statistics of
all unused attributes. It then takes the best (A) and second-
best (B) attributes based on standard deviation and calcu-
lates the ratio of their reductions. To find the best attribute
to split a node the Hoeffding bound is used. First algorithm

4https://github.com/JozefStefanInstitute/ml-rapids

Figure 2: Example of some of the timeless fea-
tures. ARVI_max_mean_len shows the length of max-
imum mean value in a sliding temporal neighbour-
hood of ARVI index. BLUE_max_mean_surf shows the
surface of the flat interval area containing the peak
using the blue raw band. EVI_mean_val shows mean
value of EVI index and SAVI_neg_sur shows the max-
imum surface of the first negative derivative interval
of SAVI index.

checks if the ratio is less than 1 − ε, where ε =
√

log 1/δ
2n

and 1− δ is desired confidence. If the ratio is small enough,
meaning that attribute A is really better than attribute B,
then the algorithm divides the node by that attribute.

Bagging of HT (incremental )
Given a standard training set D of size n, bagging generates
m new training sets Di, each of size n′, by uniform sampling
from D. Because the sampling is done with replacement,
some observations can be repeated in each Di. If n′ = n,
then for large n the set Di is expected to have the fraction
(1 − 1/e)(≈ 63.2%) of the unique examples of D, the rest
being duplicates. Then, m HT models are fitted using the
above m samples and combined by voting. To include a new
sample, a random subset of models are selected according
to Poisson distribution [9], and these models are updated
with the sample in the same way as the HT model described
above.

Näıve Bayes (incremental)
Näıve Bayes (NB) is a classification technique based on Bayes’s
Theorem. It lets us calculate the probability of data belong-
ing to a given class, given prior knowledge. Bayes’ Theorem
is:

P (class|data) =
P (data|class) timesP (class)

P (data)

https://github.com/JozefStefanInstitute/ml-rapids


where P (class|data) is the probability of class given the pro-
vided data. To add a new training instance, NB only needs
to update relevant entries in its probability table.

Logistic Regression (incremental )
Logistic regression is a statistical model that in its basic form
uses a logistic function to model a binary dependent variable.
A model with two predictors x1 and x2 and a binary variable
Y , denoted by p = P (Y = 1), which gives us the odds of the
values belonging to the class p. The relationship between
these terms can be modeled with the following equation:

p =
1

1 + e−(β0+β1x1+β2x2)

The parameters β0, β1, β2 can be determined by stochastic
gradient descend using logistic loss function.

Perceptron (incremental)
Perceptron is very similar to Logistic regression. It models a
binary variable with the same activation function. The only
difference is in the cost function that is used for gradient
descend.

Batch learning methods
Batch learning methods learn from the whole training set
and do not have to rely on heuristics (e.g. Hoeffding bound)
or incremental approaches (like SGD) for building the model.
The following batch methods have been tested: decision
trees, gradient boosting (LGBM), random forest, percep-
tron, multi-layer perceptron, and logistic regression [5].

4. RESULTS
Results of the experiments are summarised in Figures 3,
4 and Table 1. Figures depict dependency of algorithm-
specific F1 score vs. its training and inference times. An
ideal algorithm would be located in the top left corner,
achieving full F1 score with a training and inference time of
0. Any algorithm that has no other algorithm in its top-left
quadrant (no algorithm is both more accurate and faster)
belongs to a Pareto front, which means that this algorithm
is optimal for a certain set of use-cases.

Figure 3: F1 score vs. training time of different
models for predicting LULC classes. *Denotes in-
cremental algorithms.

Figure 4: F1 score vs. inference time of different
models for predicting LULC classes. *Denotes in-
cremental algorithms.

We can observe that ml-rapid’s Näıve Bayes, Hoeffding Tree,
Bagging of HT, Decision Trees, LGBM and Random Forest
belong to the Pareto optimal set of algorithms according to
the training time and F1 score. Regarding inference times
Logistic Regression, Decision Trees and Random Forest are
the only Pareto optimal algorithms. The choice of algo-
rithm depends on the available processing power and time.
For a system that has a lot of time and resources available,
it would be best to use Random Forest as it has the high-
est F1 score. In practice, this is not always feasible. For
example, if the algorithm were used for an on-board system
on the satellite, we could not afford to save all the data and
would prefer to load only the model. With an incremental
algorithm, the data could be collected, processed and dis-
carded while the acquired knowledge would be stored in the
model. Another preference for HT would be in a wrapper
feature selection algorithm [6]. This type of algorithms do
a lot of evaluations of the selected method. The main re-
sult is a subset of features that can later be used with other
algorithms. The acquired set of features might be biased
towards the method used, but the results would be obtained
much faster.

From the confusion matrix of the HT algorithm shown in
Figure 5, we can see that shrubland is often wrongly classi-
fied as forest, bareland or grassland and vice versa. This is
mainly due to the unclear distinction between these classes
(e.g. shrubland can be anything between bareland and for-
est) and poor ground truth data due to infrequent updates,
low accuracy, and lack of detail (e.g. patch of land labeled
as shrubland can also grassland and trees). The unclear dis-
tinction between certain classes may also explain confusion
between wetlands and shrubland or wetlands and grassland,
as wetlands may be covered with grass or shrubs. The lack
of detail also contributes to misclassification between grass-
land and artificial surface, as not every small grassy area,
such as park or lawn, is included in ground truth data. Fi-
nally, grass cultures, unused land overgrown by grass and
rotation of crops are likely some of the reasons for confusion
between cultivated land and grassland.



Figure 5: Confusion matrix of HT based model for
predicting LULC classes.

Training
time

Inference
time

CA F1

LGBM 4.87 0.38 0.86 0.86
Decision Tree 4.18 0.02 0.82 0.82
Random Forest 7.53 0.14 0.87 0.87
MLP 264.67 0.07 0.81 0.81
Logistic Regression 63.50 0.01 0.67 0.65
Perceptron 24.05 0.01 0.45 0.38
Hoeffding Tree* 0.44 0.06 0.79 0.79
Bagging of HT* 3.07 0.46 0.83 0.83
Näıve Bayes* 0.18 0.15 0.64 0.62
Logistic Regression* 0.31 0.08 0.15 0.07
Perceptron* 0.33 0.07 0.14 0.04

Table 1: Comparison of models for predicting LULC
classes. *Denotes incremental algorithms.

5. CONCLUSIONS
In our approach we have concentrated on effective process-
ing. Our goal was to provide methods and workflows which
can reduce the need for extensive hardware and processing
power. Our goal was focused on use cases where a near state-
of-the-art accuracy can be achieved with only a fraction of
the processing power required by the state-of-the-art. We
have researched stream mining algorithms. We have shown
that these algorithms, even if they are not the most accurate
or the fastest, take their place at the Pareto front in a multi-
target environment, which means that some users might find
them suitable for their needs and that they provide the best
results for particular computational demand.
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